Watkins' and Dayan's Q-learning is a model-free reinforcement learning algorithm that iteratively refines an estimate for the optimal action-value function of an MDP by stochastically "visiting" many state-ation pairs [Watkins and Dayan, 1992]. Variants of the algorithm lie at the heart of numerous recent state-of-the-art achievements in reinforcement learning, including the superhuman Atari-playing deep Q-network [Mnih et al., 2015]. The goal of this paper is to reproduce a precise and (nearly) self-contained proof that Q-learning converges. Much of the available literature leverages powerful theory to obtain highly generalizable results in this vein. However, this approach requires the reader to be familiar with and make many deep connections to different research areas. A student seeking to deepen their understand of Q-learning risks becoming caught in a vicious cycle of "RL-learning Hell". For this reason, we give a complete proof from start to finish using only one external result from the field of stochastic approximation, despite the fact that this minimal dependence on other results comes at the expense of some "shininess".


翻译:Watkins'和Dayaan的Q-学习是一种没有模型的强化学习算法,它通过“访问”许多州配对[Watkins和Dayan,1992年],迭接地完善了对MDP最佳行动价值功能的估计。算法的变式是最近在加强学习方面取得的许多最新最先进成就的核心,其中包括超人阿塔里人深层次的Q-网络[Mnih等人,2015年]。本文的目的是通过“访问”许多州配对[Watkins和Dayan,1992年],对MDP的最佳行动价值功能作出精确和(近距离的)自成一体的证据。许多现有文献都利用强有力的理论来获得这一类中非常普遍的结果。然而,这种方法要求读者熟悉和不同研究领域建立许多深层的联系。一个学生试图加深对Q-学习风险的理解,从而陷入“学习地狱”的恶性循环。为此,我们从一开始就完全地证明,只有利用某种外部结果,即精准的近似的近似,尽管这种最低程度对其他结果的依赖性代价是多少。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年12月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
已删除
将门创投
5+阅读 · 2018年2月28日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年12月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
已删除
将门创投
5+阅读 · 2018年2月28日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员