In e-commerce, the watchlist enables users to track items over time and has emerged as a primary feature, playing an important role in users' shopping journey. Watchlist items typically have multiple attributes whose values may change over time (e.g., price, quantity). Since many users accumulate dozens of items on their watchlist, and since shopping intents change over time, recommending the top watchlist items in a given context can be valuable. In this work, we study the watchlist functionality in e-commerce and introduce a novel watchlist recommendation task. Our goal is to prioritize which watchlist items the user should pay attention to next by predicting the next items the user will click. We cast this task as a specialized sequential recommendation task and discuss its characteristics. Our proposed recommendation model, Trans2D, is built on top of the Transformer architecture, where we further suggest a novel extended attention mechanism (Attention2D) that allows to learn complex item-item, attribute-attribute and item-attribute patterns from sequential-data with multiple item attributes. Using a large-scale watchlist dataset from eBay, we evaluate our proposed model, where we demonstrate its superiority compared to multiple state-of-the-art baselines, many of which are adapted for this task.
翻译:在电子商务中,观察名单使用户能够跟踪项目,并逐渐成为一个主要特征,在用户购物过程中发挥重要作用。观察名单项目通常具有多种属性,其价值随时间变化(例如价格、数量)。由于许多用户在观察名单中积累了几十个项目,而且由于购物意图随时间变化而变化,因此,在特定情况下建议最高级观察名单项目是有价值的。在这项工作中,我们研究了电子商务中的观察名单功能,并引入了一个新的观察名单建议任务。我们的目标是,通过预测用户将点击的下一个项目,优先关注哪些观察名单项目。我们将此任务作为一项专门顺序建议任务,并讨论其特点。我们的建议模式“Trans2D”建在变换结构的顶端,我们进一步建议在变换结构中建立一个新的扩展关注机制(注意2D),以便从多个项目属性的连续数据中学习复杂的项目、属性和项目归属模式。我们利用一个大型观察名单数据设置,从eBay点击来点击。我们评估了这个任务作为专门顺序顺序建议的任务,并讨论其特性。我们提出的建议模型“Transty2D”建在变型号上展示了它相对于多重的优越性。