A key challenge in adversarial robustness is the lack of a precise mathematical characterization of human perception, used in the very definition of adversarial attacks that are imperceptible to human eyes. Most current attacks and defenses try to avoid this issue by considering restrictive adversarial threat models such as those bounded by $L_2$ or $L_\infty$ distance, spatial perturbations, etc. However, models that are robust against any of these restrictive threat models are still fragile against other threat models. To resolve this issue, we propose adversarial training against the set of all imperceptible adversarial examples, approximated using deep neural networks. We call this threat model the neural perceptual threat model (NPTM); it includes adversarial examples with a bounded neural perceptual distance (a neural network-based approximation of the true perceptual distance) to natural images. Through an extensive perceptual study, we show that the neural perceptual distance correlates well with human judgements of perceptibility of adversarial examples, validating our threat model. Under the NPTM, we develop novel perceptual adversarial attacks and defenses. Because the NPTM is very broad, we find that Perceptual Adversarial Training (PAT) against a perceptual attack gives robustness against many other types of adversarial attacks. We test PAT on CIFAR-10 and ImageNet-100 against five diverse adversarial attacks. We find that PAT achieves state-of-the-art robustness against the union of these five attacks, more than doubling the accuracy over the next best model, without training against any of them. That is, PAT generalizes well to unforeseen perturbation types. This is vital in sensitive applications where a particular threat model cannot be assumed, and to the best of our knowledge, PAT is the first adversarial defense with this property.


翻译:对抗性强力方面的一个关键挑战是缺乏精确的数学特征描述人类感知,这是在对人类眼中无法察觉的对抗性攻击定义中使用的。目前大多数攻击和防御都试图避免这一问题,办法是考虑限制性的对抗性威胁模式,例如由美元=2美元或美元=infty美元距离、空间扰动等约束的对抗性威胁模式。然而,针对任何这些限制性威胁模式的强大模型仍然对其他威胁模式十分脆弱。为了解决这一问题,我们建议针对所有不可察觉的对抗性例子进行对抗性训练,这些例子大致使用深神经神经网络网络网络。我们把这种威胁模型称为神经感知性威胁模式(NPT-ATM);它包括具有与自然图像有界限的视觉距离的对抗性对抗性威胁模式(以神经网络为基础,真正感知性距离接近真实感知性距离)的对抗性威胁模式。通过广泛的认知性研究,我们发现,最感知性的距离与人类对敌对性例子的认知性判断性判断是完全的。在《不扩散条约》下,我们发展了新式的对《AT-AT-AT》的防御性攻击的防御性攻击性攻击,而我们更感知性攻击性攻击性攻击性攻击性攻击是最强的。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
4+阅读 · 2018年1月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
4+阅读 · 2018年1月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员