AI weather prediction ensembles with latent noise injection and optimized with the continuous ranked probability score (CRPS) have produced both accurate and well-calibrated predictions with far less computational cost compared with diffusion-based methods. However, current CRPS ensemble approaches vary in their training strategies and noise injection mechanisms, with most injecting noise globally throughout the network via conditional normalization. This structure increases training expense and limits the physical interpretability of the stochastic perturbations. We introduce Stochastic Decomposition Layers (SDL) for converting deterministic machine learning weather models into probabilistic ensemble systems. Adapted from StyleGAN's hierarchical noise injection, SDL applies learned perturbations at three decoder scales through latent-driven modulation, per-pixel noise, and channel scaling. When applied to WXFormer via transfer learning, SDL requires less than 2\% of the computational cost needed to train the baseline model. Each ensemble member is generated from a compact latent tensor (5 MB), enabling perfect reproducibility and post-inference spread adjustment through latent rescaling. Evaluation on 2022 ERA5 reanalysis shows ensembles with spread-skill ratios approaching unity and rank histograms that progressively flatten toward uniformity through medium-range forecasts, achieving calibration competitive with operational IFS-ENS. Multi-scale experiments reveal hierarchical uncertainty: coarse layers modulate synoptic patterns while fine layers control mesoscale variability. The explicit latent parameterization provides interpretable uncertainty quantification for operational forecasting and climate applications.
翻译:通过潜在噪声注入并以连续排序概率评分(CRPS)优化的AI天气预测集成方法,相比基于扩散的方法,以更低的计算成本产生了既准确又校准良好的预测结果。然而,当前基于CRPS的集成方法在训练策略和噪声注入机制上存在差异,大多数方法通过条件归一化在整个网络中全局注入噪声。这种结构增加了训练成本,并限制了随机扰动的物理可解释性。我们引入了随机分解层(SDL),用于将确定性机器学习天气模型转换为概率集成系统。SDL借鉴了StyleGAN的分层噪声注入思想,通过潜在驱动调制、逐像素噪声和通道缩放,在解码器的三个尺度上施加学习到的扰动。通过迁移学习应用于WXFormer时,SDL所需的计算成本不到基线模型训练成本的2%。每个集成成员均由紧凑的潜在张量(5 MB)生成,实现了完美的可复现性,并可通过潜在重缩放进行推断后分布调整。基于2022年ERA5再分析数据的评估表明,集成预测的分布-技能比接近1,且随着中期预报的推进,排序直方图逐渐趋于均匀,其校准性能可与业务化IFS-ENS系统相媲美。多尺度实验揭示了分层不确定性:粗粒度层调制天气尺度模式,而细粒度层控制中尺度变率。这种显式的潜在参数化为业务预报和气候应用提供了可解释的不确定性量化。