In this paper, we investigate an edge-based approach for the detection and localization of coordinated oscillatory load attacks initiated by exploited EV charging stations against the power grid. We rely on the behavioral characteristics of the power grid in the presence of interconnected EVCS while combining cyber and physical layer features to implement deep learning algorithms for the effective detection of oscillatory load attacks at the EVCS. We evaluate the proposed detection approach by building a real-time test bed to synthesize benign and malicious data, which was generated by analyzing real-life EV charging data collected during recent years. The results demonstrate the effectiveness of the implemented approach with the Convolutional Long-Short Term Memory model producing optimal classification accuracy (99.4\%). Moreover, our analysis results shed light on the impact of such detection mechanisms towards building resiliency into different levels of the EV charging ecosystem while allowing power grid operators to localize attacks and take further mitigation measures. Specifically, we managed to decentralize the detection mechanism of oscillatory load attacks and create an effective alternative for operator-centric mechanisms to mitigate multi-operator and MitM oscillatory load attacks against the power grid. Finally, we leverage the created test bed to evaluate a distributed mitigation technique, which can be deployed on public/private charging stations to average out the impact of oscillatory load attacks while allowing the power system to recover smoothly within 1 second with minimal overhead.


翻译:在本文中,我们调查了利用EV充电站对电网发起的协调一致的脉冲负载攻击的检测和定位的边基方法;我们依靠电网在相互连接的EVCS中的行为特征,同时将网络和物理层特征结合起来,以实施深层次的学习算法,以有效检测EVCS的脉冲负载攻击;我们通过建立一个实时测试床来评估拟议的检测方法,以综合良性和恶意数据,这是通过分析近年来收集到的真实生活中EV充电数据而产生的;结果表明,与具有最佳分类准确性的革命性长期短期内记忆模型所实施的方法的有效性(99.4<unk> );此外,我们的分析结果揭示了这些检测机制在将复原力建设到不同级别的EVCSE充电生态系统中的适应性方面所产生的影响,同时允许电网操作者将攻击的检测机制下放到软体负载攻击的检测机制,并为操作者核心机制提供了一个有效的替代方案,以减缓多操作性长期内长期内存储式记忆模型模型,产生最佳的分类准确性分类精确性模型(99.4<unk> )。此外,我们的分析结果揭示了这些检测机制对平均电压系统的影响,最终可以对稳定电压系统进行测试,从而对平压进行控制。</s>

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员