In this work, we propose a novel flow field-based motion planning method that drives a robot from any initial state to a desired reference trajectory such that it converges to the trajectory's end point. Despite demonstrated efficacy in using Koopman operator theory for modeling dynamical systems, Koopman does not inherently enforce convergence to desired trajectories nor to specified goals - a requirement when learning from demonstrations (LfD). We present KoopMotion which represents motion flow fields as dynamical systems, parameterized by Koopman Operators to mimic desired trajectories, and leverages the divergence properties of the learnt flow fields to obtain smooth motion fields that converge to a desired reference trajectory when a robot is placed away from the desired trajectory, and tracks the trajectory until the end point. To demonstrate the effectiveness of our approach, we show evaluations of KoopMotion on the LASA human handwriting dataset and a 3D manipulator end-effector trajectory dataset, including spectral analysis. We also perform experiments on a physical robot, verifying KoopMotion on a miniature autonomous surface vehicle operating in a non-static fluid flow environment. Our approach is highly sample efficient in both space and time, requiring only 3\% of the LASA dataset to generate dense motion plans. Additionally, KoopMotion provides a significant improvement over baselines when comparing metrics that measure spatial and temporal dynamics modeling efficacy. Code at: \href{https://alicekl.github.io/koop-motion/}{\color{blue}{https://alicekl.github.io/koop-motion}}.
翻译:本文提出了一种新颖的基于流场的运动规划方法,该方法能够驱动机器人从任意初始状态到达期望的参考轨迹,并收敛至轨迹终点。尽管库普曼算子理论在建模动态系统方面已展现出显著效果,但库普曼方法本身并不强制系统收敛至期望轨迹或指定目标点——而这正是从演示中学习(LfD)的关键需求。我们提出的KoopMotion将运动流场表示为动态系统,通过库普曼算子参数化以模拟期望轨迹,并利用学习流场的散度特性,获得平滑的运动场:当机器人偏离期望轨迹时能收敛至参考轨迹,并持续跟踪直至终点。为验证方法的有效性,我们在LASA人类手写数据集和三维机械臂末端轨迹数据集上对KoopMotion进行评估,包括谱分析。同时,我们在物理机器人上进行了实验,通过在非静态流体环境中操作的微型自主水面航行器验证了KoopMotion的性能。该方法在空间和时间上均具有极高的样本效率,仅需LASA数据集的3%即可生成密集运动规划。此外,在衡量时空动态建模效果的指标对比中,KoopMotion较基线方法有显著提升。代码地址:https://alicekl.github.io/koop-motion/。