A classification technique incorporating a novel feature derivation method is proposed for predicting failure of a system or device with multivariate time series sensor data. We treat the multivariate time series sensor data as images for both visualization and computation. Failure follows various patterns which are closely related to the root causes. Different predefined transformations are applied on the original sensors data to better characterize the failure patterns. In addition to feature derivation, ensemble method is used to further improve the performance. In addition, a general algorithm architecture of deep neural network is proposed to handle multiple types of data with less manual feature engineering. We apply the proposed method on the early predict failure of computer disk drive in order to improve storage systems availability and avoid data loss. The classification accuracy is largely improved with the enriched features, named smart features.


翻译:为了预测具有多变时间序列传感器数据的系统或装置的故障,建议采用包含新特征衍生法的分类技术,预测具有多变时间序列传感器数据的故障。我们把多变时间序列传感器数据作为图像处理,供可视化和计算之用。失败遵循与根源密切相关的各种模式。对原始传感器数据应用了不同的预设变异,以更好地说明故障模式的特点。除了特征衍生外,还采用共通法进一步改进性能。此外,还提议了深神经网络的一般算法结构,以处理多种类型的数据,而手动特性工程较少。我们采用拟议的方法,及早预测计算机磁盘驱动器的故障,以改进存储系统的可用性和避免数据损失。分类精确度随着丰富特性(称为智能特性)而大为改善。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2021年10月5日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Arxiv
7+阅读 · 2019年5月31日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员