With the introduction of advanced heterogeneous computing architectures based on GPU accelerators, large-scale production codes have had to rethink their numerical algorithms and incorporate new programming models and memory management strategies in order to run efficiently on the latest supercomputers. In this work we discuss our co-design strategy to address these challenges and achieve performance and portability with MARBL, a next-generation multi-physics code in development at Lawrence Livermore National Laboratory. We present a two-fold approach, wherein new hardware is used to motivate both new algorithms and new abstraction layers, resulting in a single source application code suitable for a variety of platforms. Focusing on MARBL's ALE hydrodynamics package, we demonstrate scalability on different platforms and highlight that many of our innovations have been contributed back to open-source software libraries, such as MFEM (finite element algorithms) and RAJA (kernel abstractions).


翻译:随着基于GPU加速器的先进多式计算结构的引入,大型生产代码不得不重新思考其数字算法,并纳入新的编程模型和记忆管理战略,以便有效地运行最新的超级计算机。在这项工作中,我们讨论了共同设计战略,以应对这些挑战,并与MARBL(Lawrence Livelmore国家实验室开发的下一代多物理代码,即MARBL(MARBL)一起实现性能和可移动性。我们提出了一个双管齐下的方法,即使用新的硬件来激励新的算法和新的抽象层,从而形成适合各种平台的单一源应用代码。我们侧重于MARBL的ALE水力动力学软件包,展示了不同平台的可扩展性,并着重指出我们的许多创新都为开放源软件图书馆(如MFEM(确定要素算法)和RAJA(核心抽象)等)提供了反馈。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年2月15日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员