We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. We establish stability results for our first- and second-order schemes under a general setting, and present ample numerical results to validate the new approach.


翻译:我们提出一种新的拉格朗乘数法,用于为抛物线型方程式构建保正率计划。新办法引入了时空拉格朗乘数,以强制实施Karush-Kuhn-Tucker(KKT)条件的相对性。然后我们使用预测者-校正法来构建一系列假设性计划:以一般的半隐含或隐含计划作为预测步骤,以及执行假设性的纠正步骤,费用可忽略不计。我们还提出一项修改,允许我们构筑除保正率外,也是大规模保护性的计划。这一新办法不限于任何特定的空间离散性计划,而且可以与各种时间分解计划相结合。我们在一般情况下为我们的第一和第二级计划设定稳定结果,并提出充分的数字结果,以验证新的办法。

0
下载
关闭预览

相关内容

在数学优化中,拉格朗日乘数法是一种用于寻找受等式约束的函数的局部最大值和最小值的策略(即,必须满足所选变量值必须完全满足一个或多个方程式的条件)。它以数学家约瑟夫·路易斯·拉格朗日命名。基本思想是将受约束的问题转换为某种形式,以便仍可以应用无约束问题的派生检验。函数的梯度与约束的梯度之间的关系很自然地导致了原始问题的重构,即拉格朗日函数。
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
Multiple projection MCMC algorithms on submanifolds
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
3+阅读 · 2017年3月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
Top
微信扫码咨询专知VIP会员