We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. We establish stability results for our first- and second-order schemes under a general setting, and present ample numerical results to validate the new approach.
翻译:我们提出一种新的拉格朗乘数法,用于为抛物线型方程式构建保正率计划。新办法引入了时空拉格朗乘数,以强制实施Karush-Kuhn-Tucker(KKT)条件的相对性。然后我们使用预测者-校正法来构建一系列假设性计划:以一般的半隐含或隐含计划作为预测步骤,以及执行假设性的纠正步骤,费用可忽略不计。我们还提出一项修改,允许我们构筑除保正率外,也是大规模保护性的计划。这一新办法不限于任何特定的空间离散性计划,而且可以与各种时间分解计划相结合。我们在一般情况下为我们的第一和第二级计划设定稳定结果,并提出充分的数字结果,以验证新的办法。