Online mirror descent (OMD) and dual averaging (DA) -- two fundamental algorithms for online convex optimization -- are known to have very similar (and sometimes identical) performance guarantees when used with a fixed learning rate. Under dynamic learning rates, however, OMD is provably inferior to DA and suffers a linear regret, even in common settings such as prediction with expert advice. We modify the OMD algorithm through a simple technique that we call stabilization. We give essentially the same abstract regret bound for OMD with stabilization and for DA by modifying the classical OMD convergence analysis in a careful and modular way that allows for straightforward and flexible proofs. Simple corollaries of these bounds show that OMD with stabilization and DA enjoy the same performance guarantees in many applications -- even under dynamic learning rates. We also shed light on the similarities between OMD and DA and show simple conditions under which stabilized-OMD and DA generate the same iterates.


翻译:在线镜底(OMD)和双平均值(DA) -- -- 两种用于在线曲线优化的基本算法 -- -- 已知在以固定学习率使用时,其性能保障非常相似(有时是相同的),但是,在动态学习率下,OMD明显比DA低,甚至根据专家意见预测等常见环境,也遭受线性遗憾。我们通过我们称之为稳定化的简单技术修改OMD算法。我们给OMD带来基本上相同的抽象的遗憾,给OMD带来稳定,给DA带来同样的遗憾,我们以谨慎和模块化的方式修改传统的OMD趋同分析,允许提供直截了当和灵活的证明。这些界限的简单缩略图显示,即使在动态学习率下,具有稳定性的OMDDA在许多应用中也享有同样的性能保障。我们还阐明了OMD和DA之间的相似之处,并展示了稳定式OMD和DA产生相同的迭代的简单条件。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
7+阅读 · 2021年4月30日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员