The purpose of this paper is to identify programs with control operators whose reduction semantics are in exact correspondence. This is achieved by introducing a relation $\simeq$, defined over a revised presentation of Parigot's $\lambda\mu$-calculus we dub $\Lambda M$. Our result builds on three main ingredients which guide our semantical development: (1) factorization of Parigot's $\lambda\mu$-reduction into multiplicative and exponential steps by means of explicit operators, (2) adaptation of Laurent's original $\simeq_\sigma$-equivalence to $\Lambda M$, and (3) interpretation of $\Lambda M$ into Laurent's polarized proof-nets (PPN). More precisely, we first give a translation of $\Lambda M$-terms into PPN which simulates the reduction relation of our calculus via cut elimination of PPN. Second, we establish a precise correspondence between our relation $\simeq$ and Laurent's $\simeq_\sigma$-equivalence for $\lambda\mu$-terms. Moreover, $\simeq$-equivalent terms translate to structurally equivalent PPN. Most notably, $\simeq$ is shown to be a strong bisimulation with respect to reduction in $\Lambda M$, i.e. two $\simeq$-equivalent terms have the exact same reduction semantics, a result which fails for Regnier's $\simeq_\sigma$-equivalence in $\lambda$-calculus as well as for Laurent's $\simeq_\sigma$-equivalence in $\lambda\mu$.
翻译:本文的用意是确定控制操作器的程序, 其减少语义精确对应。 实现这个目的的方法是引入一个关系 $ simeq $, 定义于对 Parigot $\ lambda\ mu$- calculus, 定义于对 Parigot $\ Lambda M$的修改 。 我们的结果基于指导我们语义发展的三大要素:(1) 将 Parigot $\ lambda\ mu$的乘数化成倍增倍步骤 。 (2) 将Laurent 最初的 $simeqq $- gum- equival $ 美元调整为$ lambda M$, 更准确地说, 我们首先将 $\ limbda $ 的调值与 IMequm\ mal_ mationals real- requilemental $ lablegal $- sal- real- demoqimeal $ lax mal- demoqmacideal $s deal- democial_ las- sal- sals democial- democial- lax $- $- lax $= dismacial- sal- smals dismal- lagal- $- disal- disal- las- las- las- real- real- las- $==)