3D image display is essential for next-generation volumetric imaging; however, dense depth multiplexing for 3D image projection remains challenging because diffraction-induced cross-talk rapidly increases as the axial image planes get closer. Here, we introduce a 3D display system comprising a digital encoder and a diffractive optical decoder, which simultaneously projects different images onto multiple target axial planes with high axial resolution. By leveraging multi-layer diffractive wavefront decoding and deep learning-based end-to-end optimization, the system achieves high-fidelity depth-resolved 3D image projection in a snapshot, enabling axial plane separations on the order of a wavelength. The digital encoder leverages a Fourier encoder network to capture multi-scale spatial and frequency-domain features from input images, integrates axial position encoding, and generates a unified phase representation that simultaneously encodes all images to be axially projected in a single snapshot through a jointly-optimized diffractive decoder. We characterized the impact of diffractive decoder depth, output diffraction efficiency, spatial light modulator resolution, and axial encoding density, revealing trade-offs that govern axial separation and 3D image projection quality. We further demonstrated the capability to display volumetric images containing 28 axial slices, as well as the ability to dynamically reconfigure the axial locations of the image planes, performed on demand. Finally, we experimentally validated the presented approach, demonstrating close agreement between the measured results and the target images. These results establish the diffractive 3D display system as a compact and scalable framework for depth-resolved snapshot 3D image projection, with potential applications in holographic displays, AR/VR interfaces, and volumetric optical computing.


翻译:三维图像显示对于下一代体成像至关重要;然而,三维图像投影所需的密集深度复用仍然具有挑战性,因为随着轴向图像平面间距的减小,衍射引起的串扰会迅速增加。本文介绍了一种由数字编码器和衍射光学解码器组成的三维显示系统,该系统能够以高轴向分辨率将不同图像同时投影到多个目标轴向平面上。通过利用多层衍射波前解码和基于深度学习的端到端优化,该系统实现了快照式高保真深度分辨三维图像投影,使得轴向平面间距可达到波长量级。数字编码器采用傅里叶编码网络来捕获输入图像的多尺度空间和频域特征,集成轴向位置编码,并生成统一的相位表示,该表示通过联合优化的衍射解码器在单次快照中同时编码所有待轴向投影的图像。我们系统表征了衍射解码器深度、输出衍射效率、空间光调制器分辨率和轴向编码密度的影响,揭示了制约轴向分离和三维图像投影质量的权衡关系。我们进一步展示了显示包含28个轴向切片的体图像的能力,以及按需动态重新配置图像平面轴向位置的功能。最后,我们通过实验验证了所提出的方法,证明测量结果与目标图像高度吻合。这些成果确立了衍射三维显示系统作为一种紧凑且可扩展的深度分辨快照三维图像投影框架,在全息显示、增强现实/虚拟现实界面和体光学计算等领域具有潜在应用前景。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
38+阅读 · 2021年4月16日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员