The $\texttt{torch-choice}$ is an open-source library for flexible, fast choice modeling with Python and PyTorch. $\texttt{torch-choice}$ provides a $\texttt{ChoiceDataset}$ data structure to manage databases flexibly and memory-efficiently. The paper demonstrates constructing a $\texttt{ChoiceDataset}$ from databases of various formats and functionalities of $\texttt{ChoiceDataset}$. The package implements two widely used models, namely the multinomial logit and nested logit models, and supports regularization during model estimation. The package incorporates the option to take advantage of GPUs for estimation, allowing it to scale to massive datasets while being computationally efficient. Models can be initialized using either R-style formula strings or Python dictionaries. We conclude with a comparison of the computational efficiencies of $\texttt{torch-choice}$ and $\texttt{mlogit}$ in R as (1) the number of observations increases, (2) the number of covariates increases, and (3) the expansion of item sets. Finally, we demonstrate the scalability of $\texttt{torch-choice}$ on large-scale datasets.


翻译:Torch-Choice是一个开源库,用于使用Python和PyTorch进行灵活,快速的选择建模。torch-choice提供ChoiceDataset数据结构,可以灵活,高效地管理数据库。本文演示了如何从各种格式的数据库中构建ChoiceDataset,并介绍了ChoiceDataset的功能。该包实现了两个广泛使用的模型,即多项式Logit和嵌套Logit模型,支持在模型估计期间的正则化处理。该包可以利用GPU进行估计,从而可以在大规模数据集的情况下进行扩展,同时非常高效。模型可以使用R式公式字符串或Python字典进行初始化。我们最后比较了torch-choice和R的mlogit在(1)观测次数增加,(2)协变量数量增加和(3)项目集扩展时的计算效率。最后,我们展示了torch-choice在大规模数据集上的可扩展性。

0
下载
关闭预览

相关内容

基于Lua语言的深度学习框架 github.com/torch
【2023新书】贝叶斯统计建模:使用Stan、R和Python,395页pdf
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
教程 | 如何从TensorFlow转入PyTorch
深度学习世界
38+阅读 · 2017年9月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
【2023新书】贝叶斯统计建模:使用Stan、R和Python,395页pdf
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
教程 | 如何从TensorFlow转入PyTorch
深度学习世界
38+阅读 · 2017年9月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员