Mobile-edge computing (MEC) offloads computational tasks from wireless devices to network edge, and enables real-time information transmission and computing. Most existing work concerns a small-scale synchronous MEC system. In this paper, we focus on a large-scale asynchronous MEC system with random task arrivals, distinct workloads, and diverse deadlines. We formulate the offloading policy design as a restless multi-armed bandit (RMAB) to maximize the total discounted reward over the time horizon. However, the formulated RMAB is related to a PSPACE-hard sequential decision-making problem, which is intractable. To address this issue, by exploiting the Whittle index (WI) theory, we rigorously establish the WI indexability and derive a scalable closed-form solution. Consequently, in our WI policy, each user only needs to calculate its WI and report it to the BS, and the users with the highest indices are selected for task offloading. Furthermore, when the task completion ratio becomes the focus, the shorter slack time less remaining workload (STLW) priority rule is introduced into the WI policy for performance improvement. When the knowledge of user offloading energy consumption is not available prior to the offloading, we develop Bayesian learning-enabled WI policies, including maximum likelihood estimation, Bayesian learning with conjugate prior, and prior-swapping techniques. Simulation results show that the proposed policies significantly outperform the other existing policies.
翻译:移动- 尖端计算( MEC) 卸载计算任务, 从无线设备到网络边缘, 并允许实时信息传输和计算。 大多数现有工作都涉及小规模同步的 MEC 系统。 在本文中, 我们侧重于一个大规模非同步的 MEC 系统, 随随机任务到达、 不同的工作量和不同的最后期限。 我们制定卸载政策设计为无休止的多武装土匪( RMAB ), 以在时间跨度内最大限度地获得全部折扣奖励。 但是, 已经拟定的 RMAB 与PSPACE 硬性的连续决策问题有关, 这个问题是难以解决的。 为了解决这个问题, 我们利用 Whittle 指数( WI) 理论, 我们严格地建立 WI 指数( WIT) 索引( WIC) ) 系统, 并生成一个可缩放的封闭式的封闭式解决方案 。 因此, 在我们的 WI 政策中, 每个用户只需计算自己的 WI 并向 BIS 报告, 和 最高指数的用户被选中的用户在任务卸载。 当任务完成任务完成时, 剩下的时间较短的剩余工作量( 剩余( STLWE) 优先规则) 规则 政策, 我们的SIWIWIWI 学习之前的系统在学习 之前的系统, 之前的校外的校外的校外的校外的校外的校外 政策, 。