We experimentally evaluate the practical state-of-the-art in graph bipartization (Odd Cycle Transversal), motivated by recent advances in near-term quantum computing hardware and the related embedding problems. We assemble a preprocessing suite of fast input reduction routines from the Odd Cycle Transversal (OCT) and Vertex Cover (VC) literature, and compare algorithm implementations using Quadratic Unconstrained Binary Optimization problems from the quantum literature. We also generate a corpus of frustrated cluster loop graphs, which have previously been used to benchmark quantum annealing hardware. The diversity of these graphs leads to harder OCT instances than in existing benchmarks. In addition to combinatorial branching algorithms for solving OCT directly, we study various reformulations into other NP-hard problems such as VC and Integer Linear Programming (ILP), enabling the use of solvers such as CPLEX. We find that for heuristic solutions with time constraints under a second, iterative compression routines jump-started with a heuristic solution perform best, after which point using a highly tuned solver like CPLEX is worthwhile. Results on exact solvers are split between using ILP formulations on CPLEX and solving VC formulations with a branch-and-reduce solver. We extend our results with a large corpus of synthetic graphs, establishing robustness and potential to generalize to other domain data. In total, over 8000 graph instances are evaluated, compared to the previous canonical corpus of 100 graphs. Finally, we provide all code and data in an open source suite, including a Python API for accessing reduction routines and branching algorithms, along with scripts for fully replicating our results.


翻译:我们实验性地评估图形双向分解( Odcourse Transversal) 中实用最新艺术,这是近期量子计算硬件和相关嵌入问题的最新进展所激发的。 我们从 Odcourse Transversal (OCT) 和 Vertex Cover(VC) 文献中收集了一套预处理快速减少输入的常规, 并用量量子文献中的 Quadristic 不加限制的二进制优化问题比较了算法实施情况。 我们还生成了一套受创的集环图, 这些集环图曾被用来基准量反射硬件。 这些图表的多样性导致OCT的常规运行情况比现有的基准要难。 除了为直接解决 OCT (OCT) 和 Vetex C 封面(VC) 和 Integer Linear 编程(ILPL) 等其他难解问题, 我们发现, 在开放源码中, 迭代压缩的常规代码中, 和超量的解算器中, 能够提供总和超量的解算。

0
下载
关闭预览

相关内容

归纳逻辑程序设计(ILP)是机器学习的一个分支,它依赖于逻辑程序作为一种统一的表示语言来表达例子、背景知识和假设。基于一阶逻辑的ILP具有很强的表示形式,为多关系学习和数据挖掘提供了一种很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是学习结构化或半结构化关系数据的首要国际论坛。最初专注于逻辑程序的归纳,多年来,它大大扩展了研究范围,并欢迎在逻辑学习、多关系数据挖掘、统计关系学习、图形和树挖掘等各个方面作出贡献,学习其他(非命题)基于逻辑的知识表示框架,探索统计学习和其他概率方法的交叉点。官网链接:https://ilp2019.org/
人工智能顶会WSDM2021优秀论文奖(Best Paper Award Runner-Up)出炉
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
已删除
将门创投
3+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
0+阅读 · 2021年5月10日
Graph-Based Recommendation System
Arxiv
4+阅读 · 2018年7月31日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关资讯
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
已删除
将门创投
3+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员