While Bayesian statistics is popular in psychological research for its intuitive uncertainty quantification and flexible decision-making, its performance in finite samples can be unreliable. In this paper, we demonstrate a key vulnerability: When analysts' chosen prior distribution mismatches the true parameter-generating process, Bayesian inference can be misleading in the long run. Given that this true process is rarely known in practice, we propose a safer alternative: calibrating Bayesian credible regions to achieve frequentist validity. This latter criterion is stronger and guarantees validity of Bayesian inference regardless of the underlying parameter-generating mechanism. To solve the calibration problem in practice, we propose a novel stochastic approximation algorithm. A Monte Carlo experiment is conducted and reported, in which we observe that uncalibrated Bayesian inference can be liberal under certain parameter-generating scenarios, whereas our calibrated solution is always able to maintain validity.


翻译:尽管贝叶斯统计因其直观的不确定性量化和灵活的决策制定在心理学研究中广受欢迎,但其在有限样本下的表现可能不可靠。本文揭示了一个关键缺陷:当分析者选择的先验分布与真实的参数生成过程不匹配时,贝叶斯推断在长期运行中可能产生误导性结果。鉴于真实过程在实践中鲜为人知,我们提出一种更安全的替代方案:通过校准贝叶斯可信区域以实现频率学派有效性。后一标准更为严格,能确保贝叶斯推断在任何参数生成机制下均保持有效性。为解决实际中的校准问题,我们提出一种新颖的随机逼近算法。通过蒙特卡洛实验的开展与报告,我们观察到未校准的贝叶斯推断在某些参数生成情境下可能过于宽松,而我们的校准方案始终能够维持有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
17+阅读 · 2019年3月28日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
17+阅读 · 2019年3月28日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员