Online anomaly detection from a data stream is critical for the safety and security of many applications but is facing severe challenges due to complex and evolving data streams from IoT devices and cloud-based infrastructures. Unfortunately, existing approaches fall too short for these challenges; online anomaly detection methods bear the burden of handling the complexity while offline deep anomaly detection methods suffer from the evolving data distribution. This paper presents a framework for online deep anomaly detection, ARCUS, which can be instantiated with any autoencoder-based deep anomaly detection methods. It handles the complex and evolving data streams using an adaptive model pooling approach with two novel techniques: concept-driven inference and drift-aware model pool update; the former detects anomalies with a combination of models most appropriate for the complexity, and the latter adapts the model pool dynamically to fit the evolving data streams. In comprehensive experiments with ten data sets which are both high-dimensional and concept-drifted, ARCUS improved the anomaly detection accuracy of the streaming variants of state-of-the-art autoencoder-based methods and that of the state-of-the-art streaming anomaly detection methods by up to 22% and 37%, respectively.
翻译:从数据流中在线检测异常现象对于许多应用的安全和安保至关重要,但由于来自IoT装置和云基基础设施的数据流复杂且不断演变,因此面临严峻的挑战。 不幸的是,现有方法对于这些挑战来说过于落后;在线异常现象检测方法承担着处理复杂问题的负担,而离线深度异常现象检测方法则因不断变化的数据流而受到影响。本文件介绍了一个在线深度异常现象检测框架ARCUS, 可以通过任何基于自动编码的深层异常检测方法进行即时处理。它使用适应性模型集合方法处理复杂且不断演变的数据流,采用两种新颖技术:概念驱动的推断和漂浮观测模型库更新;前者检测异常现象,结合最适合复杂程度的模型,而后者动态地调整模型库以适应不断变化的数据流。在与10套数据组进行的全面实验中,这些数据集既具有高维度又具有概念的高度偏移,ARCUS改进了基于现代自动coder方法流变式的异常现象检测准确性,以及状态流式异常现象检测方法的精确度,分别由22%和37%分别提高到37%和37%。