We study stochastic Poisson integrators for a class of stochastic Poisson systems driven by Stratonovich noise. Such geometric integrators preserve Casimir functions and the Poisson map property. For this purpose, we propose explicit stochastic Poisson integrators based on a splitting strategy, and analyse their qualitative and quantitative properties: preservation of Casimir functions, existence of almost sure or moment bounds, asymptotic preserving property, and strong and weak rates of convergence. The construction of the schemes and the theoretical results are illustrated through extensive numerical experiments for three examples of stochastic Lie--Poisson systems, namely: stochastically perturbed Maxwell--Bloch, rigid body and sine--Euler equations.
翻译:我们研究Stratonovich 噪音驱动的一类随机波斯森系统的蒸气合成器。这些几何合成器保存了Casimir 函数和 Poisson 地图属性。为此目的,我们提议基于分裂战略的明确蒸气式波斯森合成器,并分析其质量和数量特性:保存卡西米尔功能,存在几乎确定或瞬时的界限,没有保护财产,以及强弱的趋同率。通过对三个随机利皮森系统的例子进行广泛的数字实验来说明这些系统和理论结果的构建,这三个实例是:随机近距离的麦克斯韦尔-布洛奇、硬体和正弦体等式。