We investigate the complexity of bilevel combinatorial optimization with uncertainty in the follower's objective, in a robust optimization approach. We show that the robust counterpart of the bilevel problem under interval uncertainty can be $\Sigma^{\text P}_2$-hard, even when the certain bilevel problem is NP-equivalent and the follower's problem is tractable. On the contrary, in the discrete uncertainty case, the robust bilevel problem is at most one level harder than the follower's problem.
翻译:我们用一种稳健的优化方法来调查双级组合优化的复杂性,并找出跟踪者目标的不确定性。 我们发现,在间隔期不确定性下的双级问题中,强势对应方可以是$\Sigma ⁇ text P ⁇ 2$-hard,即使某些双级问题相当于NP,而跟踪者的问题可以伸缩。 相反,在离散的不确定性案例中,稳健的双级问题最多比跟踪者的问题更难解决一个层次。