In this paper, we consider the underdamped Langevin diffusion (ULD) and propose a numerical approximation using its associated ordinary differential equation (ODE). When used as a Markov Chain Monte Carlo (MCMC) algorithm, we show that the ODE approximation achieves a $2$-Wasserstein error of $\varepsilon$ in $\mathcal{O}\big(d^{\frac{1}{3}}/\varepsilon^{\frac{2}{3}}\big)$ steps under the standard smoothness and strong convexity assumptions on the target distribution. This matches the complexity of the randomized midpoint method proposed by Shen and Lee [NeurIPS 2019] which was shown to be order optimal by Cao, Lu and Wang. However, the main feature of the proposed numerical method is that it can utilize additional smoothness of the target log-density $f$. More concretely, we show that the ODE approximation achieves a $2$-Wasserstein error of $\varepsilon$ in $\mathcal{O}\big(d^{\frac{2}{5}}/\varepsilon^{\frac{2}{5}}\big)$ and $\mathcal{O}\big(\sqrt{d}/\varepsilon^{\frac{1}{3}}\big)$ steps when Lipschitz continuity is assumed for the Hessian and third derivative of $f$. By discretizing this ODE using a third order Runge-Kutta method, we can obtain a practical MCMC method that uses just two additional gradient evaluations per step. In our experiment, where the target comes from a logistic regression, this method shows faster convergence compared to other unadjusted Langevin MCMC algorithms.
翻译:在本文中, 我们考虑朗氏扩散( UNLD) 低于标准平滑度和目标分布的强烈共和度假设( ODE), 并用其相关的普通差分方程( ODE) 来提出一个数值近似值。 当使用 Markov 链链链 Monte Carlo( MMC) 算法时, 我们显示, 以$mathcal( daffrac{ 1 ⁇ 3} /\\\\\\\\\ big) 美元计算, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元=========美元/ 以美元计算, 以美元计算, 以美元 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元 以美元 以美元 以美元 以美元 以美元 以美元为单位, 以美元为单位, 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元