In this paper, we consider the underdamped Langevin diffusion (ULD) and propose a numerical approximation using its associated ordinary differential equation (ODE). When used as a Markov Chain Monte Carlo (MCMC) algorithm, we show that the ODE approximation achieves a $2$-Wasserstein error of $\varepsilon$ in $\mathcal{O}\big(d^{\frac{1}{3}}/\varepsilon^{\frac{2}{3}}\big)$ steps under the standard smoothness and strong convexity assumptions on the target distribution. This matches the complexity of the randomized midpoint method proposed by Shen and Lee [NeurIPS 2019] which was shown to be order optimal by Cao, Lu and Wang. However, the main feature of the proposed numerical method is that it can utilize additional smoothness of the target log-density $f$. More concretely, we show that the ODE approximation achieves a $2$-Wasserstein error of $\varepsilon$ in $\mathcal{O}\big(d^{\frac{2}{5}}/\varepsilon^{\frac{2}{5}}\big)$ and $\mathcal{O}\big(\sqrt{d}/\varepsilon^{\frac{1}{3}}\big)$ steps when Lipschitz continuity is assumed for the Hessian and third derivative of $f$. By discretizing this ODE using a third order Runge-Kutta method, we can obtain a practical MCMC method that uses just two additional gradient evaluations per step. In our experiment, where the target comes from a logistic regression, this method shows faster convergence compared to other unadjusted Langevin MCMC algorithms.


翻译:在本文中, 我们考虑朗氏扩散( UNLD) 低于标准平滑度和目标分布的强烈共和度假设( ODE), 并用其相关的普通差分方程( ODE) 来提出一个数值近似值。 当使用 Markov 链链链 Monte Carlo( MMC) 算法时, 我们显示, 以$mathcal( daffrac{ 1 ⁇ 3} /\\\\\\\\\ big) 美元计算, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元=========美元/ 以美元计算, 以美元计算, 以美元 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元 以美元 以美元 以美元 以美元 以美元 以美元为单位, 以美元为单位, 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
专知会员服务
17+阅读 · 2020年12月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员