An accurate load forecasting has always been one of the main indispensable parts in the operation and planning of power systems. Among different time horizons of forecasting, while short-term load forecasting (STLF) and long-term load forecasting (LTLF) have respectively got benefits of accurate predictors and probabilistic forecasting, medium-term load forecasting (MTLF) demands more attention due to its vital role in power system operation and planning such as optimal scheduling of generation units, robust planning program for customer service, and economic supply. In this study, a hybrid method, composed of Support Vector Regression (SVR) and Symbiotic Organism Search Optimization (SOSO) method, is proposed for MTLF. In the proposed forecasting model, SVR is the main part of the forecasting algorithm while SOSO is embedded into it to optimize the parameters of SVR. In addition, a minimum redundancy-maximum relevance feature selection algorithm is used to in the preprocessing of input data. The proposed method is tested on EUNITE competition dataset to demonstrate its proper performance. Furthermore, it is compared with some previous works to show eligibility of our method.
翻译:准确的负载预报一直是动力系统运行和规划中不可或缺的主要部分之一,在不同的预测时间范围内,虽然短期负载预报和长期负载预报(LTLF)分别得益于准确的预测器和概率预测,中期负载预报(MTLF)由于其在发电系统运行和规划中的重要作用,例如发电单位的最佳时间安排、强有力的客户服务规划方案和经济供应等方面,要求更多地注意中期负载预报(MTLF)在发电系统运行和规划中的重要作用,例如发电单位的最佳时间安排、强有力的客户服务规划方案以及经济供应。在这项研究中,为MTLF提出了由支助矢量反射和共生生物搜索优化(SOSO)方法组成的混合方法。在拟议的预测模型中,SVR是预报算法的主要部分,而SOSOO是优化SO的参数。此外,在投入数据的预处理中采用了最低限度的冗余-最大关联性特征选择算法。在EUNITE竞争数据集上测试了拟议方法,以证明其适当性能。此外,它与先前的一些工作相比,它表明我们的方法符合资格。