Nowadays, the development of social media allows people to access the latest news easily. During the COVID-19 pandemic, it is important for people to access the news so that they can take corresponding protective measures. However, the fake news is flooding and is a serious issue especially under the global pandemic. The misleading fake news can cause significant loss in terms of the individuals and the society. COVID-19 fake news detection has become a novel and important task in the NLP field. However, fake news always contain the correct portion and the incorrect portion. This fact increases the difficulty of the classification task. In this paper, we fine tune the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model as our base model. We add BiLSTM layers and CNN layers on the top of the finetuned BERT model with frozen parameters or not frozen parameters methods respectively. The model performance evaluation results showcase that our best model (BERT finetuned model with frozen parameters plus BiLSTM layers) achieves state-of-the-art results towards COVID-19 fake news detection task. We also explore keywords evaluation methods using our best model and evaluate the model performance after removing keywords.


翻译:目前,社交媒体的发展使人们很容易获得最新消息。在COVID-19大流行期间,人们必须获得新闻,以便采取相应的保护措施。然而,假消息正在泛滥,是全球大流行病下的一个严重问题。误导假消息可能会对个人和社会造成重大损失。COVID-19假新闻探测已成为NLP领域一项新颖的重要任务。然而,假消息总是包含正确的部分和错误部分。这一事实增加了分类任务的难度。在本文中,我们调整了来自变换器(BERT)的预先培训的双向编码显示模型,作为我们的基础模型。我们在微调的BERT模型上添加了BLSTM层和CNND层,分别使用冻结参数或非冻结参数方法。示范性业绩评价结果显示,我们的最佳模型(BERT与冻结参数和BILSTM层的微调模型)实现了对COVID-19假新闻探测任务的最新结果。我们还利用最佳模型来探索关键词评价方法,并在删除后评估模型性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Credibility-based Fake News Detection
Arxiv
3+阅读 · 2019年11月2日
Arxiv
11+阅读 · 2019年4月15日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员