Software bloat is code that is packaged in an application but is actually not necessary to run the application. The presence of software bloat is an issue for security, for performance, and for maintenance. In this paper, we introduce a novel technique for debloating, which we call coverage-based debloating. We implement the technique for one single language: Java bytecode. We leverage a combination of state-of-the-art Java bytecode coverage tools to precisely capture what parts of a project and its dependencies are used when running with a specific workload. Then, we automatically remove the parts that are not covered, in order to generate a debloated version of the project. We succeed to debloat 211 library versions from a dataset of 94 unique open-source Java libraries. The debloated versions are syntactically correct and preserve their original behavior according to the workload. Our results indicate that 68.3% of the libraries' bytecode and 20.3% of their total dependencies can be removed through coverage-based debloating. For the first time in the literature on software debloating, we assess the utility of debloated libraries with respect to client applications that reuse them. We select 988 client projects that either have a direct reference to the debloated library in their source code or which test suite covers at least one class of the libraries that we debloat. Our results show that 81.5% of the clients, with at least one test that uses the library, successfully compile and pass their test suite when the original library is replaced by its debloated version.


翻译:软件 bloat 是应用程序中包装的代码, 但实际上对于运行应用程序来说并不必要 。 软件 bloat 的存在是一个安全、 性能和维护问题 。 在本文中, 我们引入了一种新的拆卸技术, 我们称之为基于覆盖拆卸。 我们使用一种单一语言: Java bytecode 的技术 。 我们使用一种最新的 Java bytecode 覆盖工具组合, 精确地捕捉项目的部分及其依赖性在运行特定工作量时使用。 然后, 我们自动删除未覆盖的部分, 以生成一个拆卸的版本 。 以生成项目的拆卸版本 。 我们从94个独有开源 Java 图书馆的数据集中成功拆卸掉 211 图书馆版本 。 拆卸版本非常正确, 根据工作量保留原始行为。 我们的结果显示, 图书馆的68. 3 % 及其全部依赖性的20. 可以通过基于覆盖的拆卸载的拆卸版本 来替换。 在文献中, 最起码的一个版本的版本是, 我们通过测试客户图书馆的版本, 选择了该版本。

0
下载
关闭预览

相关内容

Java 是一门编程语言,拥有跨平台、面向对象、泛型编程等特性。
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员