项目名称: g-C3N4/磷酸盐杂化体系的微结构调控及光生载流子迁移性质研究
项目编号: No.51472081
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无机非金属材料学科
项目作者: 马新国
作者单位: 湖北工业大学
项目金额: 83万元
中文摘要: 采用共轭大π键聚合物修饰半导体光催化材料的表面是当前光催化科学研究的新热点。研究其界面微结构调控及杂化作用机理对进一步提高该类光催化材料的活性及能效具有重要的学术价值。本项目将挖掘磷酸盐光催化活性高和层状聚合物g-C3N4比表面积大、吸附能力强的特点,构筑具有独特电子结构的g-C3N4/磷酸盐异质结杂化体系。首先建立界面/表面微结构物理模型,开展晶格匹配和界面杂化等对g-C3N4/磷酸盐异质结的能带结构和光学性质影响的理论研究;同时充分发挥化学吸附法在构建界面微结构的独特优势,对其结晶性、形貌及界面结构等进行微结构调控;最后结合实验与理论研究,揭示界面杂化作用对光生载流子分离和转移影响的内在规律。通过界面微结构调控及杂化作用机理的研究,不仅可以揭示共轭大π键材料g-C3N4的杂化作用对磷酸盐光催化活性影响的内在规律,而且为设计新型高活性和高能效的杂化光催化材料提供了研究思路。
中文关键词: 光催化材料;异质结;杂化;微结构调控
英文摘要: Modified surface of semiconductor photocatalytic materials with big π-conjugated polymer is a new topic in the field of photocatalysis science. Therefore, the research on the microstructure modulation and hybrid interaction mechanism to enhance activity and energy efficiency of semiconductor photocatalytic materials has significantly academic value. The present proposal will focus on constructing the g-C3N4/phosphate heterojunction hybrid system with particular electronic structure to fully utilize the feature of the high activity of phosphate, and the strong adsorption and big surface ratio of the layered polymeric semiconductor material g-C3N4. Firstly, the interface&surface physical models are established to study the effect of the interface lattice match and interface hybridization on energy band structure and optical properties by first-principles calculations. Meantime, we will develop unique advantage of chemical adsorption method on constructing the g-C3N4/phosphate heterojunction hybrid system to modulate crystallinity, morphology, interface structure. Lastly, combining experimental and theoretical studies, the intrinsic rule is revealed for the effect of interface hybridization on photoinduced carrier separation and transfer. By exploring interface microstructure modulation and hybrid interaction mechanism, not only the rule is revealed from the effect of hybrid interaction of big π-conjugated polymer g-C3N4 on the photocatalytic activity of phosphate, but also the approach is exploited for designing new hybrid photocatalytic materials with high activity and energy efficiency.
英文关键词: photocatalytic material;heterojunction;hybridization;microstructure modulation