Data-driven AI promises support for pathologists to discover sparse tumor patterns in high-resolution histological images. However, from a pathologist's point of view, existing AI suffers from three limitations: (i) a lack of comprehensiveness where most AI algorithms only rely on a single criterion; (ii) a lack of explainability where AI models tend to work as 'black boxes' with little transparency; and (iii) a lack of integrability where it is unclear how AI can become part of pathologists' existing workflow. Based on a formative study with pathologists, we propose two designs for a human-AI collaborative tool: (i) presenting joint analyses of multiple criteria at the top level while (ii) revealing hierarchically traceable evidence on-demand to explain each criterion. We instantiate such designs in xPath -- a brain tumor grading tool where a pathologist can follow a top-down workflow to oversee AI's findings. We conducted a technical evaluation and work sessions with twelve medical professionals in pathology across three medical centers. We report quantitative and qualitative feedback, discuss recurring themes on how our participants interacted with xPath, and provide initial insights for future physician-AI collaborative tools.


翻译:由数据驱动的AI承诺支持病理学家发现高分辨率神学图像中稀有的肿瘤模式。然而,从病理学家的角度来看,现有的AI有三种局限性:(一) 缺乏全面性,因为大多数AI算法只依赖单一标准;(二) 缺乏解释性,因为AI模型往往以“黑盒”为“黑盒”,透明度很小;(三) 缺乏兼容性,因为不清楚AI如何成为病理学家现有工作流程的一部分。根据与病理学家的成型研究,我们建议人类-AI合作工具有两种设计:(一) 在最高一级对多种标准进行联合分析,同时(二) 根据需要显示可按等级追踪的证据来解释每一项标准。我们在xPath中即时进行这种设计,这是一种脑肿瘤分级工具,一位病理学家可以跟踪自上而下的工作流程,以监督AI的调查结果。我们与三个医疗中心的12名病理专家进行了技术评价和工作会议。我们报告定量和定性反馈,讨论参与者如何与xPath互动的经常性主题,并为未来的医生提供初步见解。

0
下载
关闭预览

相关内容

XPath即为XML路径语言,它是一种用来确定XML(标准通用标记语言的子集)文档中某部分位置的语言。XPath基于XML的树状结构,提供在数据结构树中找寻节点的能力。起初 XPath 的提出的初衷是将其作为一个通用的、介于XPointer与XSLT间的语法模型。但是 XPath 很快的被开发者采用来当作小型查询语言。
多标签学习的新趋势(2020 Survey)
专知会员服务
43+阅读 · 2020年12月6日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
专知会员服务
61+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员