Data-driven AI promises support for pathologists to discover sparse tumor patterns in high-resolution histological images. However, from a pathologist's point of view, existing AI suffers from three limitations: (i) a lack of comprehensiveness where most AI algorithms only rely on a single criterion; (ii) a lack of explainability where AI models tend to work as 'black boxes' with little transparency; and (iii) a lack of integrability where it is unclear how AI can become part of pathologists' existing workflow. Based on a formative study with pathologists, we propose two designs for a human-AI collaborative tool: (i) presenting joint analyses of multiple criteria at the top level while (ii) revealing hierarchically traceable evidence on-demand to explain each criterion. We instantiate such designs in xPath -- a brain tumor grading tool where a pathologist can follow a top-down workflow to oversee AI's findings. We conducted a technical evaluation and work sessions with twelve medical professionals in pathology across three medical centers. We report quantitative and qualitative feedback, discuss recurring themes on how our participants interacted with xPath, and provide initial insights for future physician-AI collaborative tools.
翻译:由数据驱动的AI承诺支持病理学家发现高分辨率神学图像中稀有的肿瘤模式。然而,从病理学家的角度来看,现有的AI有三种局限性:(一) 缺乏全面性,因为大多数AI算法只依赖单一标准;(二) 缺乏解释性,因为AI模型往往以“黑盒”为“黑盒”,透明度很小;(三) 缺乏兼容性,因为不清楚AI如何成为病理学家现有工作流程的一部分。根据与病理学家的成型研究,我们建议人类-AI合作工具有两种设计:(一) 在最高一级对多种标准进行联合分析,同时(二) 根据需要显示可按等级追踪的证据来解释每一项标准。我们在xPath中即时进行这种设计,这是一种脑肿瘤分级工具,一位病理学家可以跟踪自上而下的工作流程,以监督AI的调查结果。我们与三个医疗中心的12名病理专家进行了技术评价和工作会议。我们报告定量和定性反馈,讨论参与者如何与xPath互动的经常性主题,并为未来的医生提供初步见解。