We propose a novel three-way coupling method to model the contact interaction between solid and fluid driven by strong surface tension. At the heart of our physical model is a thin liquid membrane that simultaneously couples to both the liquid volume and the rigid objects, facilitating accurate momentum transfer, collision processing, and surface tension calculation. This model is implemented numerically under a hybrid Eulerian-Lagrangian framework where the membrane is modelled as a simplicial mesh and the liquid volume is simulated on a background Cartesian grid. We devise a monolithic solver to solve the interactions among the three systems of liquid, solid, and membrane. We demonstrate the efficacy of our method through an array of rigid-fluid contact simulations dominated by strong surface tension, which enables the faithful modeling of a host of new surface-tension-dominant phenomena including: objects with higher density than water can keep afloat on top of it; 'Cheerios effect' about floating objects that do not normally float attract one another; surface tension weakening effect caused by surface-active constituents.
翻译:我们建议一种新型的三路联动方法,以模拟由强力表面张力驱动的固体和液体之间的接触互动。 我们物理模型的核心是薄液体膜,将液体体积和僵硬物体同时并存,以便于精确的动力转移、碰撞处理和表面张力计算。 这个模型是在一个混合的欧莱安-拉格朗格框架下从数字上实施的, 膜模拟成一个模擬的网状网状, 液体体积则模拟在底底底的喀尔提斯网格上。 我们设计了一个单立解器, 以解决液态、 固体和膜三个系统之间的相互作用。 我们通过一系列以强力表面张力为主的硬浮力接触模拟, 展示了我们的方法的功效。 这使得能够对一系列新的表面加压现象进行忠实的建模, 其中包括: 比水密度高的物体可以在顶部保持浮力的物体; “ 希里奥斯效应”关于通常不浮动物体相互吸引的浮力; 表面拉力效应效应由地表活跃的成分造成削弱效应。