The Galois group of an infinite Galois extension has a natural topology, called the Krull topology, which has the important property of being profinite. It is impossible to talk about Galois representations, and hence the Langlands Program, without first defining the Krull topology. We explain our formalisation of this topology, and our proof that it is profinite, in the Lean 3 theorem prover.
翻译:无限伽洛瓦扩展的伽洛瓦集团具有一种自然地貌,叫做克鲁尔地貌学,它具有无穷无尽的重要属性。 谈到加洛瓦代表制和兰兰地方案,如果不首先定义克鲁尔地貌学,就不可能谈。 我们解释了我们对这一地貌学的正规化,并解释了我们证明它是精致的,在利安3理论中。