This paper introduces the Descriptive Variational Autoencoder (DVAE), an unsupervised and end-to-end trainable neural network for predicting vehicle trajectories that provides partial interpretability. The novel approach is based on the architecture and objective of common variational autoencoders. By introducing expert knowledge within the decoder part of the autoencoder, the encoder learns to extract latent parameters that provide a graspable meaning in human terms. Such an interpretable latent space enables the validation by expert defined rule sets. The evaluation of the DVAE is performed using the publicly available highD dataset for highway traffic scenarios. In comparison to a conventional variational autoencoder with equivalent complexity, the proposed model provides a similar prediction accuracy but with the great advantage of having an interpretable latent space. For crucial decision making and assessing trustworthiness of a prediction this property is highly desirable.
翻译:本文介绍描述性多功能自动编码器(DVAE),这是一个无人监督的、端到端的可训练神经网络,用于预测具有部分可解释性的车辆轨迹。新颖的方法以通用多变量自动编码器的结构和目标为基础。通过在自动编码器解码器的解码器部分引入专家知识,编码器学会了提取具有人类可理解含义的潜在参数。这样的可解释的潜在空间使得专家定义的规则集得以验证。DVAE的评估是使用公开的高速公路交通假设高D数据集进行的。与具有同等复杂性的常规变异自动编码器相比,拟议的模型提供了类似的预测准确性,但具有可解释的潜在空间的极大优势。对于关键的决策和评估预测这一属性的可靠性是非常可取的。