One of the most important aspects of moving forward to the next generation networks like 5G/6G, is to enable network slicing in an efficient manner. The most challenging issues are the uncertainties in consumption and communication demand. Because the slices' arrive to the network in different times and their lifespans vary, the solution should dynamically react to online slice requests. The joint problem of online admission control and resource allocation considering the energy consumption is formulated mathematically. It is based on Integer Linear Programming (ILP), where, the $\Gamma$- Robustness concept is exploited to overcome Virtual Links (VL) bandwidths' and Virtual Network Functions (VNF) workloads' uncertainties. Then, an optimal algorithm that adopts this mathematical model is proposed. To overcome the high computational complexity of ILP which is NP-hard, a new heuristic algorithm is developed. The assessments' results indicate that the efficiency of heuristic is vital in increasing the accepted requests' count, decreasing power consumption and providing adjustable tolerance vs. the VNFs workloads' and VLs traffics' uncertainties, separately. Considering the acceptance ratio and power consumption that constitute the two important components of the objective function, heuristic has about 7% and 12% optimality gaps, respectively, while being about 30X faster than that of optimal algorithm.


翻译:向下一代网络(如 5G/6G)前进的最重要方面之一是让网络有效切片。 最棘手的问题是消费和通信需求的不确定性。 因为切片在不同的时间和寿命期间到达网络, 解决方案应该对在线切片请求动态反应。 计算出考虑到能源消耗的在线录入控制和资源分配的共同问题。 它基于 Integer 线性编程( ILP), 在那里, $\Gamma$- robustness 概念被用来克服虚拟链接( VL) 带宽和虚拟网络功能( VNF) 工作量的不确定性。 然后, 提出了一个采用这个数学模型的最佳算法。 要克服IP- hard 的高度计算复杂性, 正在开发一种新的超值算法。 评估结果显示, 超值效率对于增加被接受的请求的计数、 降低电力消耗量和提供可调整的容忍度与 VNFs 工作量和 VLs 流量的不确定性( VNF) 和 VNF) 工作量( VNF) 工作量的不确定性。 然后, 提出了一个采用这个数学模型模型模型模型模型的最佳算算法的最佳算法 —— 12 最佳比率和最佳消费两个重要的比例和最高值( 12 % ) 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
30+阅读 · 2021年7月7日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员