Optimizing high-degree of freedom robotic manipulators requires searching complex, high-dimensional configuration spaces, a task that is computationally challenging for classical methods. This paper introduces a quantum native framework that integrates quantum machine learning with Grover's algorithm to solve kinematic optimization problems efficiently. A parameterized quantum circuit is trained to approximate the forward kinematics model, which then constructs an oracle to identify optimal configurations. Grover's algorithm leverages this oracle to provide a quadratic reduction in search complexity. Demonstrated on simulated 1-DoF, 2-DoF, and dual-arm manipulator tasks, the method achieves significant speedups-up to 93x over classical optimizers like Nelder Mead as problem dimensionality increases. This work establishes a foundational, quantum-native framework for robot kinematic optimization, effectively bridging quantum computing and robotics problems.
翻译:优化高自由度机器人操作臂需要在复杂的高维构型空间中进行搜索,这对经典计算方法而言是一项计算挑战。本文提出了一种量子原生框架,将量子机器学习与Grover算法相结合,以高效求解运动学优化问题。通过训练参数化量子电路来近似正向运动学模型,进而构建用于识别最优构型的预言机。Grover算法利用该预言机实现了搜索复杂度的二次方级降低。在模拟的单自由度、双自由度及双臂操作臂任务上的实验表明,随着问题维度的增加,该方法相比Nelder Mead等经典优化器取得了显著的加速效果——最高可达93倍。本研究为机器人运动学优化建立了一个基础的量子原生框架,有效连接了量子计算与机器人学问题领域。