Lexically constrained decoding for machine translation has shown to be beneficial in previous studies. Unfortunately, constraints provided by users may contain mistakes in real-world situations. It is still an open question that how to manipulate these noisy constraints in such practical scenarios. We present a novel framework that treats constraints as external memories. In this soft manner, a mistaken constraint can be corrected. Experiments demonstrate that our approach can achieve substantial BLEU gains in handling noisy constraints. These results motivate us to apply the proposed approach on a new scenario where constraints are generated without the help of users. Experiments show that our approach can indeed improve the translation quality with the automatically generated constraints.
翻译:在以往的研究中,机械翻译的解码系统被严格限制,已经证明是有益的。 不幸的是,用户提供的制约可能包含现实世界中的错误。 如何在这种实际情景中操纵这些吵闹的制约仍然是一个未决问题。 我们提出了一个将制约作为外部记忆的新框架。 以这种软方式,一种错误的制约可以被纠正。 实验表明,我们的方法在处理噪音制约方面可以取得巨大的BLEU收益。 这些结果激励我们将提议的方法应用于一种新的情景,即没有用户帮助就会产生制约。 实验表明,我们的方法确实可以提高翻译质量,而自动产生的制约也会提高翻译质量。