We study unbiased $(1+1)$ evolutionary algorithms on linear functions with an unknown number $n$ of bits with non-zero weight. Static algorithms achieve an optimal runtime of $O(n (\ln n)^{2+\epsilon})$, however, it remained unclear whether more dynamic parameter policies could yield better runtime guarantees. We consider two setups: one where the mutation rate follows a fixed schedule, and one where it may be adapted depending on the history of the run. For the first setup, we give a schedule that achieves a runtime of $(1\pm o(1))\beta n \ln n$, where $\beta \approx 3.552$, which is an asymptotic improvement over the runtime of the static setup. Moreover, we show that no schedule admits a better runtime guarantee and that the optimal schedule is essentially unique. For the second setup, we show that the runtime can be further improved to $(1\pm o(1)) e n \ln n$, which matches the performance of algorithms that know $n$ in advance. Finally, we study the related model of initial segment uncertainty with static position-dependent mutation rates, and derive asymptotically optimal lower bounds. This answers a question by Doerr, Doerr, and K\"otzing.
翻译:我们研究的线性函数的进化算法没有偏向性(1+1)$1美元,其数量未知,比重不为零。 静态算法达到最佳运行时间$(n)(n)(n)\\ ⁇ 2 ⁇ 2 ⁇ ⁇ ⁇ epsilon}$), 然而,仍然不清楚更动态参数政策是否能够产生更好的运行时间保证。 我们考虑两个设置: 一个设置, 突变率遵循固定时间表, 一个设置根据运行历史加以调整。 在第一个设置中, 我们给出一个时间表, 实现运行时间为$(1\ pm o(1))\beta n\ n\ n n$, 其中$\\ approx 3. 552$, 这是在静态设置运行时间的运行时间里, 一个微调的参数性改进。 此外, 我们显示, 没有一个时间表允许更好的运行时间保证, 并且最优的时间安排基本上是独特的。 在第二个设置中, 我们显示运行时间可以进一步改进到$(1\ pm(1) e n\ n n$, = n, 这样的运行时间, 这样的运行模式将匹配到最低的状态, 与最稳定度分析的状态的状态的状态的状态, 最后, Dorquestal- slateal resmissueal res res res res res res restition res res res restition laut laut res