Courcelle's celebrated theorem states that all MSO-expressible properties can be decided in linear time on graphs of bounded treewidth. Unfortunately, the hidden constant implied by this theorem is a tower of exponentials whose height increases with each quantifier alternation in the formula. More devastatingly, this cannot be improved, under standard assumptions, even if we consider the much more restricted problem of deciding FO-expressible properties on trees. In this paper we revisit this well-studied topic and identify a natural special case where the dependence of Courcelle's theorem can, in fact, be improved. Specifically, we show that all FO-expressible properties can be decided with an elementary dependence on the input formula, if the input graph has bounded pathwidth (rather than treewidth). This is a rare example of treewidth and pathwidth having different complexity behaviors. Our result is also in sharp contrast with MSO logic on graphs of bounded pathwidth, where it is known that the dependence has to be non-elementary, under standard assumptions. Our work builds upon, and generalizes, a corresponding meta-theorem by Gajarsk{\'{y}} and Hlin{\v{e}}n{\'{y}} for the more restricted class of graphs of bounded tree-depth.
翻译:Courcelle 庆祝的论调表明,所有 MSO 表达的特性都可以在线性时间里在捆绑的树枝图上决定。 不幸的是, 这个理论隐含的常态是指数的塔, 其高度随公式中每个量化的交替而增加。 更具有破坏性的是, 在标准假设下, 这一点是无法改进的, 即使我们考虑到在树上决定 FO 表达的特性这个更受限制的问题。 在本文中, 我们重新审视了这个经过仔细研究的话题, 并确定了一个自然的特例, 其中Courcelle 的理论依赖性事实上可以得到改善。 具体地说, 我们显示所有FO 表达的特性都可以在基本依赖输入公式的情况下加以决定, 如果输入图将路径线捆绑起来( 而不是树的交错 ) 。 这是一个罕见的关于树枝和路径之间复杂行为的例子。 我们的结果也与MSO 逻辑在捆绑路径的图表上形成鲜明的对比, 在那里我们知道, 其依赖性必须是非元素性的, 在标准的HZ 类的图层假设下, 我们的工作将一个普通的图状 和图状的图 建立起来。