Nowadays, machine and deep learning techniques are widely used in different areas, ranging from economics to biology. In general, these techniques can be used in two ways: trying to adapt well-known models and architectures to the available data, or designing custom architectures. In both cases, to speed up the research process, it is useful to know which type of models work best for a specific problem and/or data type. By focusing on EEG signal analysis, and for the first time in literature, in this paper a benchmark of machine and deep learning for EEG signal classification is proposed. For our experiments we used the four most widespread models, i.e., multilayer perceptron, convolutional neural network, long short-term memory, and gated recurrent unit, highlighting which one can be a good starting point for developing EEG classification models.
翻译:目前,从经济学到生物学等不同领域广泛使用机器和深层学习技术,这些技术一般可以两种方式使用:试图使众所周知的模式和结构适应现有数据,或设计定制结构。在这两种情况下,为了加快研究进程,有必要知道哪种类型的模型对具体问题和(或)数据类型最有效。通过侧重于EEEG信号分析,并在文献中首次提出了EEEG信号分类的机器和深层学习基准。对于我们的实验,我们使用了四种最广泛的模型,即多层透视器、进化神经网络、长期记忆和封闭的经常单元,强调哪些模型可以成为开发EEG分类模型的良好起点。