When analyzing complex networks, an important task is the identification of those nodes which play a leading role for the overall communicability of the network. In the context of modifying networks (or making them robust against targeted attacks or outages), it is also relevant to know how sensitive the network's communicability reacts to changes in certain nodes or edges. Recently, the concept of total network sensitivity was introduced in [O. De la Cruz Cabrera, J. Jin, S. Noschese, L. Reichel, Communication in complex networks, Appl. Numer. Math., 172, pp. 186-205, 2022], which allows to measure how sensitive the total communicability of a network is to the addition or removal of certain edges. One shortcoming of this concept is that sensitivities are extremely costly to compute when using a straight-forward approach (orders of magnitude more expensive than the corresponding communicability measures). In this work, we present computational procedures for estimating network sensitivity with a cost that is essentially linear in the number of nodes for many real-world complex networks. Additionally, we extend the sensitivity concept such that it also covers sensitivity of subgraph centrality and the Estrada index, and we discuss the case of node removal. We propose a priori bounds for these sensitivities which capture the qualitative behavior well and give insight into the general behavior of matrix function based network indices under perturbations. These bounds are based on decay results for Fr\'echet derivatives of matrix functions with structured, low-rank direction terms which might be of independent interest also for other applications than network analysis.


翻译:当分析复杂的网络时,一项重要任务是确定那些对网络的整体通信性具有牵头作用的节点。在修改网络(或使其对目标攻击或断流具有强大性)的背景下,还有必要了解网络的通信性对某些节点或边缘的变化反应的敏感程度。最近,在[O.De\ Cruz Cabrera, J. Jin, S. Noschese, L. Reichel, 复杂网络中的通信, Appl. Numer. Math., 172, pp.186-205, 20222]中,这些节点能够衡量网络的完全通信性对于某些边缘的增加或去除的敏感程度。这个概念的一个缺点是,当使用直向前进的方法(规模的顺序比相应的通信性措施更昂贵)时,敏感度概念会非常昂贵。在这项工作中,我们提出了计算网络敏感度的计算程序,其成本基本上为许多真实世界复杂网络的节点数字的直线性。此外,我们把一个网络的总敏感度的精确度分析结构结构,在先前的精确度上,我们也可以将这种敏感度概念扩大到这些精确的精确的精确的网络。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员