Network load balancers are central components in modern data centers, that cooperatively distribute workloads of high arrival rates across application servers, thereby contribute to offering scalable services. The independent and "selfish" load balancing strategy is not necessarily the globally optimal one. This paper represents the load balancing problem as a cooperative team-game with limited observations over system states, and adopts multi-agent reinforcement learning methods to make fair load balancing decisions without inducing additional processing latency. On both a simulation and an emulation system, the proposed method is evaluated against other load balancing algorithms, including state-of-the-art heuristics and learning-based strategies. Experiments under different settings and complexities show the advantageous performance of the proposed method.
翻译:网络负载平衡器是现代数据中心的核心组成部分,它通过应用服务器合作分配高抵达率的工作量,从而帮助提供可扩展的服务。独立和“自私”的负载平衡策略并不一定是全球最佳策略。本文代表了在系统状态上观察有限的合作团队游戏中产生的负载平衡问题,并采用了多试剂强化学习方法来做出公平的负载平衡决策,而不会引起额外的处理延迟。 在模拟和模拟系统中,拟议方法都是对照其他负载平衡算法,包括最新超时和学习战略来评估的。在不同环境和复杂情况下进行的实验显示了拟议方法的有利性。