The proliferation of low-cost Internet of Things (IoT) devices has led to a race between wireless security and channel attacks. Traditional cryptography requires high-computational power and is not suitable for low-power IoT scenarios. Whist, recently developed physical layer security (PLS) can exploit common wireless channel state information (CSI), its sensitivity to channel estimation makes them vulnerable from attacks. In this work, we exploit an alternative common physics shared between IoT transceivers: the monitored channel-irrelevant physical networked dynamics (e.g., water/oil/gas/electrical signal-flows). Leveraging this, we propose for the first time, graph layer security (GLS), by exploiting the dependency in physical dynamics among network nodes for information encryption and decryption. A graph Fourier transform (GFT) operator is used to characterize such dependency into a graph-bandlimted subspace, which allows the generations of channel-irrelevant cipher keys by maximizing the secrecy rate. We evaluate our GLS against designed active and passive attackers, using IEEE 39-Bus system. Results demonstrate that, GLS is not reliant on wireless CSI, and can combat attackers that have partial networked dynamic knowledge (realistic access to full dynamic and critical nodes remains challenging). We believe this novel GLS has widespread applicability in secure health monitoring and for Digital Twins in adversarial radio environments.


翻译:低成本的物源互联网(IoT)装置的扩散导致无线安全与频道攻击之间的竞争。传统的加密技术需要高compective 动力,不适合低功率的IoT情景。Whist,最近开发的物理层安全(PLS)可以利用通用的无线频道状态信息(CSI),它对于频道估计的敏感度使得它们易受攻击。在这项工作中,我们利用IoT收发器之间共享的替代共同物理学:受监控的频道相关物理网络动态(例如水/石油/气体/电力信号流)。我们首次提议利用这个应用性,图层安全(GLS),利用网络节点之间的物理动态依赖进行信息加密和解密。一个图 Fourier变电动操作器(GFT)将这种依赖定性为图形带宽的子空间,通过最大程度的保密率,让几代与频道有关的密码键(例如水/石油/天然气/天然气/电力信号流)。我们用IEEE39-BUTS-S安全性攻击器来评价我们的GLS设计的积极和被动攻击者。我们第一次提议,图层层层层层安全访问系统不能让GLES相信G-Bal-C-Bal-Basimalstal Stal Streal Strealview系统。结果能够对这个动态的进入这种动态系统进行精确的系统进行精确的系统。结果。我们仍然相信。GLSBSA的系统进行精确的系统。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
41+阅读 · 2020年9月6日
【KDD2020教程】多模态网络表示学习
专知会员服务
132+阅读 · 2020年8月26日
COVID-19文献知识图谱构建,UIUC-哥伦比亚大学
专知会员服务
43+阅读 · 2020年7月2日
知识图谱本体结构构建论文合集
专知会员服务
108+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员