Graph neural network (GNN) is an efficient neural network model for graph data and is widely used in different fields, including wireless communications. Different from other neural network models, GNN can be implemented in a decentralized manner with information exchanges among neighbors, making it a potentially powerful tool for decentralized control in wireless communication systems. The main bottleneck, however, is wireless channel impairments that deteriorate the prediction robustness of GNN. To overcome this obstacle, we analyze and enhance the robustness of the decentralized GNN in different wireless communication systems in this paper. Specifically, using a GNN binary classifier as an example, we first develop a methodology to verify whether the predictions are robust. Then, we analyze the performance of the decentralized GNN binary classifier in both uncoded and coded wireless communication systems. To remedy imperfect wireless transmission and enhance the prediction robustness, we further propose novel retransmission mechanisms for the above two communication systems, respectively. Through simulations on the synthetic graph data, we validate our analysis, verify the effectiveness of the proposed retransmission mechanisms, and provide some insights for practical implementation.
翻译:图形神经网络(GNN)是图表数据的一个高效神经网络模型,广泛用于不同领域,包括无线通信。与其他神经网络模型不同,GNN可以分散实施,与邻国之间的信息交流不同,使其成为无线通信系统分散控制的潜在强大工具。然而,主要的瓶颈是无线频道缺陷,这使GNN的预测力更强。为克服这一障碍,我们分析并增强分散在本文不同无线通信系统中的GNN的稳健性。具体地说,我们以GNN二进制分类器为例,首先开发一种方法,以核实预测是否稳健。然后,我们分析非编码和编码无线通信系统中分散的GNN二进制分类器的性能。为了补救不完善的无线传输,加强预测的稳健性,我们进一步提议上述两个通信系统的新型再传输机制。我们通过对合成图表数据的模拟,验证我们的分析,核实拟议的再传输机制的有效性,并为实际实施提供一些见解。