This paper introduces a new theoretical framework for optimizing second-order behaviors of wireless networks. Unlike existing techniques for network utility maximization, which only considers first-order statistics, this framework models every random process by its mean and temporal variance. The inclusion of temporal variance makes this framework well-suited for modeling stateful fading wireless channels and emerging network performance metrics such as age-of-information (AoI). Using this framework, we sharply characterize the second-order capacity region of wireless access networks. We also propose a simple scheduling policy and prove that it can achieve every interior point in the second-order capacity region. To demonstrate the utility of this framework, we apply it for an important open problem: the optimization of AoI over Gilbert-Elliott channels. We show that this framework provides a very accurate characterization of AoI. Moreover, it leads to a tractable scheduling policy that outperforms other existing work.
翻译:本文为优化无线网络的二阶行为引入了新的理论框架。 与仅考虑一阶统计的网络功用最大化现有技术不同, 这个框架以其平均和时间差异来模拟每个随机过程。 包含时间差异使得这个框架非常适合模拟状态淡化的无线频道和新兴网络性能指标, 如信息时代( AoI ) 。 使用这个框架, 我们明显地描述无线接入网络的二阶容量区域。 我们还提出了一个简单的排期政策, 并证明它能够达到二阶容量区域的每个内部点。 为了展示这个框架的实用性, 我们应用这个框架来应对一个重要的开放问题: 将AoI 优化于 Gilbert- Elliott 频道。 我们显示这个框架提供了非常准确的AoI 特征。 此外, 它导致一个可移动的排期政策, 超越了其他现有工作。