Generating realistic sequences is a central task in many machine learning applications. There has been considerable recent progress on building deep generative models for sequence generation tasks. However, the issue of mode-collapsing remains a main issue for the current models. In this paper we propose a GAN-based generic framework to address the problem of mode-collapse in a principled approach. We change the standard GAN objective to maximize a variational lower-bound of the log-likelihood while minimizing the Jensen-Shanon divergence between data and model distributions. We experiment our model with text generation task and show that it can generate realistic text with high diversity.
翻译:生成现实序列是许多机器学习应用程序的一项核心任务。最近,在为序列生成任务建立深层基因化模型方面取得了相当大的进展。然而,模式重叠问题仍然是当前模型的主要问题。在本文件中,我们提议一个基于GAN的通用框架,以原则方法解决模式折叠问题。我们改变标准GAN目标,以最大限度地降低对日志的可变性,同时尽量减少Jensen-Shanon数据和模型分布之间的差异。我们实验我们的模型,用文本生成任务,并表明它能够产生具有高度多样性的现实文本。