Epidemic modeling is an essential tool to understand the spread of the novel coronavirus and ultimately assist in disease prevention, policymaking, and resource allocation. In this article, we establish a state of the art interface between classic mathematical and statistical models and propose a novel space-time epidemic modeling framework to study the spatial-temporal pattern in the spread of infectious disease. We propose a quasi-likelihood approach via the penalized spline approximation and alternatively reweighted least-squares technique to estimate the model. Furthermore, we provide a short-term and long-term county-level prediction of the infected/death count for the U.S. by accounting for the control measures, health service resources, and other local features. Utilizing spatiotemporal analysis, our proposed model enhances the dynamics of the epidemiological mechanism and dissects the spatiotemporal structure of the spreading disease. To assess the uncertainty associated with the prediction, we develop a projection band based on the envelope of the bootstrap forecast paths. The performance of the proposed method is evaluated by a simulation study. We apply the proposed method to model and forecast the spread of COVID-19 at both county and state levels in the United States.
翻译:流行型模型是了解新冠状病毒传播情况、最终协助疾病预防、决策和资源分配的基本工具。在本条中,我们建立了经典数学和统计模型之间最先进的界面,提出了新的时空流行病模型框架,以研究传染性疾病传播的空间时空模式。我们提出一种准类似方法,通过受罚的螺旋近似和或重新加权的最小平方技术来估计模型。此外,我们通过计算控制措施、保健服务资源和其他当地特征,对美国感染/死亡人数进行短期和长期的县级预测。我们利用空间时空分析,我们提议的模型加强流行病学机制的动态,并解析传播性疾病的波形时空结构。为了评估与预测有关的不确定性,我们根据靴带预测路径的包包,制定了一个投影带。我们通过模拟研究对拟议方法的绩效进行评估。我们采用拟议方法,在州和州两级对COVID-19的传播进行模型和预测。我们采用了拟议方法,在州和州两级对COVID-19的传播进行模型和预测。