The `mathematical language' Automath, conceived by N.G. de Bruijn in 1968, was the first theorem prover actually working and was used for checking many specimina of mathematical content. Its goals and syntactic ideas inspired Th. Coquand and G. Huet to develop the calculus of constructions, CC, which was one of the first widely used interactive theorem provers and forms the basis for the widely used Coq system. The original syntax of Automath is not easy to grasp. Yet, it is essentially based on a derivation system that is similar to the Calculus of Constructions (`CC'). The relation between the Automath syntax and CC has not yet been sufficiently described, although there are many references in the type theory community to Automath. In this paper we focus on the backgrounds and on some uncommon aspects of the syntax of Automath. We expose the fundamental aspects of a `generic' Automath system, encapsulating the most common versions of Automath. We present this generic Automath system in a modern syntactic frame. The obtained system makes use of {\lambda}D, a direct extension of CC with definitions.
翻译:1968年由N.G. de Bruijn构思的“数学语言”自制图案是第一个实际发挥作用的理论证明,用于检查数学内容的许多特征,其目标和合成思想启发了T. Coquand 和 G. Huet, 以开发建筑的微积分, CC, 这是首次广泛使用的交互式理论证明, 并构成广泛使用的 Coq 系统的基础。 原“ 自然” 的合成系统并非易于理解。 然而,它基本上基于类似于“ 建筑的计算” 的衍生系统( CC ) 。 尚未充分描述“ 自动合成法” 和“ CC” 之间的关系, 尽管在类型理论界中有许多关于“ 自动” 的引用。 在本文中,我们侧重于“ 自动合成” 合成法的背景和一些不寻常的方面。 我们暴露了“ generic” 自动合成系统的基本方面, 包罗罗列了“ 建筑” 最常见的版本。 我们用现代的“ CCAutmata” 框架的这个通用的系统, 和“ COD” 系统以现代的“ 格式的“ 格式” 的“ 的“ 格式” 的“ 格式” 的“ 系统” 。