In many real-world situations, there are strong constraints on the ways in which a physical system can be manipulated. We investigate the entropy production (EP) and extractable work involved in bringing a system from some initial distribution $p$ to some final distribution $p'$, given constraints on the set of master equations available to the driving protocol. Given some set of constraints, we first derive general bounds on EP and extractable work, as well as a decomposition of the nonequilibrium free energy into an "accessible free energy", which can be extracted as work, and "inaccessible free energy", which must be dissipated as EP. We then analyze the thermodynamics of feedback control in the presence of constraints, and decompose the information acquired in a measurement into "accessible information", which can be used to increase extracted work, and "inaccessible information", which cannot be used in this way. We use our framework to analyze EP and work for protocols subject to symmetry, modularity, and coarse-grained constraints. Our approach is demonstrated on numerous continuous and discrete-state systems, including different kinds of Szilard boxes.
翻译:在许多现实世界中,物理系统可以操纵的方式受到很大限制。 我们调查了将一个系统从最初的分发量到最后的分发量, 所需的生产量和可抽取的工程。 我们调查了将一个系统从某些最初的分发量到某些最后的分发量, 但由于对驱动程序所能使用的总方程式的限制, 我们首先从一个总方程式和可抽取的工程中得出一般的界限, 以及将无平衡的自由能源分解成一个“ 可获得的自由能源”, 可以作为工作提取, 以及“ 获得的免费能源”, 并且必须作为 EP 进行分解。 我们然后分析在存在限制的情况下, 将反馈控制的热动力学分析, 并将测量中获得的信息分解为“ 可获得性信息 ”, 这些信息可用于增加提取量的工作, 以及“ 可调取用的信息 ”, 以及不能用于此方式的“ ” 。 我们使用我们的框架来分析可调制、 模块性、 和腐蚀性制约下的协议的工程。 我们的方法在无数连续和离心系统上都得到了证明,, 包括各种的容器。