Textual escalation detection has been widely applied to e-commerce companies' customer service systems to pre-alert and prevent potential conflicts. Similarly, in public areas such as airports and train stations, where many impersonal conversations frequently take place, acoustic-based escalation detection systems are also useful to enhance passengers' safety and maintain public order. To this end, we introduce a system based on acoustic-lexical features to detect escalation from speech, Voice Activity Detection (VAD) and label smoothing are adopted to further enhance the performance in our experiments. Considering a small set of training and development data, we also employ transfer learning on several wellknown emotional detection datasets, i.e. RAVDESS, CREMA-D, to learn advanced emotional representations that is then applied to the conversational escalation detection task. On the development set, our proposed system achieves 81.5% unweighted average recall (UAR) which significantly outperforms the baseline with 72.2% UAR.


翻译:同样,在机场和火车站等公共场所,经常发生许多非人性谈话,基于声学的升级探测系统也有助于加强乘客的安全和维护公共秩序。为此,我们采用了基于声学-传统特征的系统,以探测语音升级、语音活动探测(VAD)和标签平滑,以进一步提高我们实验的绩效。考虑到一小套培训和开发数据,我们还利用一些众所周知的情感探测数据集(即REMA-D)的转移学习,学习先进的情感表现,然后应用于谈话升级探测任务。在开发中,我们提议的系统实现了8.1.5%的未加权平均记数(UAR),大大超过了72.2%的UAR基准。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员