Recent progress in distributed semantic models (DSM) offers new ways to estimate personality traits of both fictive and real people. In this exploratory study we applied an extended version of the algorithm developed in Jacobs (2019) to compute the likeability scores, emotional figure profiles and BIG5 personality traits for 100 historical persons from the arts, politics or science domains whose names are rather unique (e.g., Einstein, Kahlo, Picasso). We compared the results produced by static (word2vec) and dynamic (BERT) language model representations in four studies. The results show both the potential and limitations of such DSM-based computations of personality profiles and point ways to further develop this approach to become a useful tool in data science, psychology or computational and neurocognitive poetics (Jacobs, 2015).
翻译:分布式语义模型(DSM)的近期进展为估计视觉和真实人的个性特征提供了新的方法。在这项探索性研究中,我们应用了Jacobs(2019年)开发的算法的扩大版本来计算来自艺术、政治或科学领域、姓名相当独特的100名历史人士(例如爱因斯坦、Kahlo、毕卡索)的相近分数分数、情感图形剖面和BIG5个个个个性格特征。我们在四项研究中比较了静态(word2vec)和动态(BERT)语言模型表现的结果。结果显示了这种基于DSM的个性特征模型计算的潜力和局限性,并指出了如何进一步发展这一方法,成为数据科学、心理学或计算和神经认知诗学(Jacobs,2015年)的有用工具。