Autonomous harvesting in the open presents a complex manipulation problem. In most scenarios, an autonomous system has to deal with significant occlusion and require interaction in the presence of large structural uncertainties (every plant is different). Perceptual and modeling uncertainty make design of reliable manipulation controllers for harvesting challenging, resulting in poor performance during deployment. We present a sim2real reinforcement learning (RL) framework for occlusion-aware plant manipulation, where a policy is learned entirely in simulation to reposition stems and leaves to reveal target fruit(s). In our proposed approach, we decouple high-level kinematic planning from low-level compliant control which simplifies the sim2real transfer. This decomposition allows the learned policy to generalize across multiple plants with different stiffness and morphology. In experiments with multiple real-world plant setups, our system achieves up to 86.7% success in exposing target fruits, demonstrating robustness to occlusion variation and structural uncertainty.


翻译:在开放环境中进行自主采摘提出了一个复杂的操作问题。在大多数场景中,自主系统必须处理严重的遮挡,并需要在存在巨大结构不确定性(每株植物都不同)的情况下进行交互。感知和建模的不确定性使得为采摘任务设计可靠的操作控制器具有挑战性,导致部署时性能不佳。我们提出了一种用于遮挡感知植物操作的仿真到真实强化学习框架,其中策略完全在仿真环境中学习,以重新定位茎和叶来显露目标果实。在我们提出的方法中,我们将高层运动规划与低层顺应性控制解耦,从而简化了仿真到真实的迁移。这种分解使得学习到的策略能够泛化到具有不同刚度和形态的多种植物上。在多个真实世界植物设置下的实验中,我们的系统在显露目标果实方面取得了高达86.7%的成功率,展示了对遮挡变化和结构不确定性的鲁棒性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员