In this work, we adapt the {\em micro-macro} methodology to stochastic differential equations for the purpose of numerically solving oscillatory evolution equations. The models we consider are addressed in a wide spectrum of regimes where oscillations may be slow or fast. We show that through an ad-hoc transformation (the micro-macro decomposition), it is possible to retain the usual orders of convergence of Euler-Maruyama method, that is to say, uniform weak order one and uniform strong order one half.
翻译:在这项工作中,我们调整了 ~ em 微- macro} 方法,以适应随机差异方程式, 以便从数字上解决血管进化方程式。 我们所考虑的模型在一系列制度下处理,这些制度可能变速缓慢或快。 我们表明,通过临时改变(微- 宏观分解),可以保持欧勒- 丸山方法通常的趋同顺序, 也就是说, 统一弱点一和统一强点二分之一。