Fuzzy systems have good modeling capabilities in several data science scenarios, and can provide human-explainable intelligence models with explainability and interpretability. In contrast to transaction data, which have been extensively studied, sequence data are more common in real-life applications. To obtain a human-explainable data intelligence model for decision making, in this study, we investigate explainable fuzzy-theoretic utility mining on multi-sequences. Meanwhile, a more normative formulation of the problem of fuzzy utility mining on sequences is formulated. By exploring fuzzy set theory for utility mining, we propose a novel method termed pattern growth fuzzy utility mining (PGFUM) for mining fuzzy high-utility sequences with linguistic meaning. In the case of sequence data, PGFUM reflects the fuzzy quantity and utility regions of sequences. To improve the efficiency and feasibility of PGFUM, we develop two compressed data structures with explainable fuzziness. Furthermore, one existing and two new upper bounds on the explainable fuzzy utility of candidates are adopted in three proposed pruning strategies to substantially reduce the search space and thus expedite the mining process. Finally, the proposed PGFUM algorithm is compared with PFUS, which is the only currently available method for the same task, through extensive experimental evaluation. It is demonstrated that PGFUM achieves not only human-explainable mining results that contain the original nature of revealable intelligibility, but also high efficiency in terms of runtime and memory cost.


翻译:与已广泛研究的交易数据相比,序列数据在现实生活中的应用中更为常见。为了获得用于决策的人类解释数据情报模型,我们在本研究报告中调查在多种后果上可解释的模糊理论实用采矿;同时,通过对序列上的模糊实用性采矿问题进行更规范的表述;通过探索通用采矿的模糊集合理论,我们提出了一个新颖的方法,即:为具有语言含义的采矿业采用模式性模糊实用性采矿法(PGUUM),以大幅降低具有语言含义的高实用性序列。就序列数据而言,PGUM反映了模糊数据数据序列的数量和实用性区域。为了提高多后果模型的效率和可行性,我们开发了两种具有解释性模糊性的压缩数据结构。此外,在三个拟议流程中采用了一种现有和两个关于候选人可解释的模糊性应用性理论。在三个拟议流程中,为大幅降低具有语言含义的模糊性公用事业开发模式,因此,PGFUM的运行成本目前仅包含搜索成本,而快速的运行流程中也仅包含所展示的流程。

0
下载
关闭预览

相关内容

可信机器学习的公平性综述
专知会员服务
68+阅读 · 2021年2月23日
【Nature-MI】可解释人工智能的药物发现
专知会员服务
45+阅读 · 2020年11月1日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
专知会员服务
62+阅读 · 2020年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
14+阅读 · 2020年9月1日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关VIP内容
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Top
微信扫码咨询专知VIP会员