The tensor power method generalizes the matrix power method to higher order arrays, or tensors. Like in the matrix case, the fixed points of the tensor power method are the eigenvectors of the tensor. While every real symmetric matrix has an eigendecomposition, the vectors generating a symmetric decomposition of a real symmetric tensor are not always eigenvectors of the tensor. In this paper we show that whenever an eigenvector is a generator of the symmetric decomposition of a symmetric tensor, then (if the order of the tensor is sufficiently high) this eigenvector is robust, i.e., it is an attracting fixed point of the tensor power method. We exhibit new classes of symmetric tensors whose symmetric decomposition consists of eigenvectors. Generalizing orthogonally decomposable tensors, we consider equiangular tight frame decomposable and equiangular set decomposable tensors. Our main result implies that such tensors can be decomposed using the tensor power method.
翻译:强压功率法将矩阵功率法一般化为高排序阵列或加压。 与矩阵外壳一样, 强力法的固定点是振动的振动元体。 虽然每个真实的对称矩阵都具有异异构, 但产生真实对称强力阵列的对称分解作用的矢量并非始终是振动体的对称分解作用器。 在本文中, 我们显示,每当一个向导体是对称强力阵列的对称分解分解生成器, 然后( 如果对称强力阵列的排序足够高), 这个向导体是强大的, 也就是说, 它吸引了对称强力法的固定点。 我们展示了新型的对称强力阵列, 其对称分解作用由振动体组成。 普通化或可分解的振动体体, 我们认为, 等角阵阵阵阵阵阵阵阵可分解, 和可反向导力阵变的阵列。