In Joint Communication and Radar (JCR)-based Autonomous Vehicle (AV) systems, optimizing waveform structure is one of the most challenging tasks due to strong influences between radar and data communication functions. Specifically, the preamble of a data communication frame is typically leveraged for the radar function. As such, the higher number of preambles in a Coherent Processing Interval (CPI) is, the greater radar's performance is. In contrast, communication efficiency decreases as the number of preambles increases. Moreover, AVs' surrounding radio environments are usually dynamic with high uncertainties due to their high mobility, making the JCR's waveform optimization problem even more challenging. To that end, this paper develops a novel JCR framework based on the Markov decision process framework and recent advanced techniques in deep reinforcement learning. By doing so, without requiring complete knowledge of the surrounding environment in advance, the JCR-AV can adaptively optimize its waveform structure (i.e., number of frames in the CPI) to maximize radar and data communication performance under the surrounding environment's dynamic and uncertainty. Extensive simulations show that our proposed approach can improve the joint communication and radar performance up to 46.26% compared with those of conventional methods (e.g., greedy policy- and fixed waveform-based approaches).


翻译:在基于联合通信和雷达(JCR)的基于联合通信和自动飞行器(AV)系统中,优化波形结构由于雷达和数据通信功能之间的强大影响而成为最具挑战性的任务之一。具体地说,数据通信框架的序言通常是用于雷达功能的杠杆,因此,协调处理跨Val(CPI)的序言数量较多,因此雷达的性能更高。相反,通信效率随着序言数量的增加而下降。此外,AV的周围无线电环境通常具有动态性,由于其高度流动性而具有高度不确定性,使JCR的波形优化问题更加具有挑战性。为此,本文件根据Markov决定程序框架和最近的深入强化学习先进技术,开发了一个全新的JCR框架。通过这样做,在不要求事先充分了解周围环境的情况下,JCR-AV可以适应性地优化其波形结构(即CPI的框架数目),以便在周围环境的动态和不确定性下最大限度地提高雷达和数据通信绩效。广泛的模拟表明,我们拟议的办法可以改进联合通信和数据通信绩效,将常规汇率方法提高到46.6%,而常规汇率方法则比较了46.

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年6月21日
Adaptive Synthetic Characters for Military Training
Arxiv
45+阅读 · 2021年1月6日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员